Large-Scale Integration of All-Glass Valves on a Microfluidic Device
نویسندگان
چکیده
In this study, we developed a method for fabricating a microfluidic device with integrated large-scale all-glass valves and constructed an actuator system to control each of the valves on the device. Such a microfluidic device has advantages that allow its use in various fields, including physical, chemical, and biochemical analyses and syntheses. However, it is inefficient and difficult to integrate the large-scale all-glass valves in a microfluidic device using conventional glass fabrication methods, especially for the through-hole fabrication step. Therefore, we have developed a fabrication method for the large-scale integration of all-glass valves in a microfluidic device that contains 110 individually controllable diaphragm valve units on a 30 mm ˆ 70 mm glass slide. This prototype device was fabricated by first sandwiching a 0.4-mm-thick glass slide that contained 110 1.5-mm-diameter shallow chambers, each with two 50-μm-diameter through-holes, between an ultra-thin glass sheet (4 μm thick) and another 0.7-mm-thick glass slide that contained etched channels. After the fusion bonding of these three layers, the large-scale microfluidic device was obtained with integrated all-glass valves consisting of 110 individual diaphragm valve units. We demonstrated its use as a pump capable of generating a flow rate of approximately 0.06–5.33 μL/min. The maximum frequency of flow switching was approximately 12 Hz.
منابع مشابه
Microfluidic large-scale integration.
We developed high-density microfluidic chips that contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large-scale integration. A key component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns...
متن کاملTeflon films for chemically-inert microfluidic valves and pumps.
We present a simple method for fabricating chemically-inert Teflon microfluidic valves and pumps in glass microfluidic devices. These structures are modeled after monolithic membrane valves and pumps that utilize a featureless polydimethylsiloxane (PDMS) membrane bonded between two etched glass wafers. The limited chemical compatibility of PDMS has necessitated research into alternative materia...
متن کاملElectrostatically-driven elastomer components for user-reconfigurable high density microfluidics.
This paper presents the design, fabrication, and characterization of an electrostatically actuated user-reconfigurable elastomer microfluidic system intended for very large scale integration (VLSI) microfluidics. By adding thin film metal flexures into the PDMS polymer, individual elastomer channels were made to self-close without the use of pneumatics via the application of 15-20 V, 5 MHz sign...
متن کاملMicrofluidic large-scale integration: the evolution of design rules for biological automation.
Microfluidic large-scale integration (mLSI) refers to the development of microfluidic chips with thousands of integrated micromechanical valves and control components. This technology is utilized in many areas of biology and chemistry and is a candidate to replace today's conventional automation paradigm, which consists of fluid-handling robots. We review the basic development of mLSI and then ...
متن کاملA Microfluidic Programmable Array for Label-free Detection of Biomolecules
Title of Dissertation: A MICROFLUIDIC PROGRAMMABLE ARRAY FOR LABEL-FREE DETECTION OF BIOMOLECULES Peter Hume Dykstra, Doctor of Philosophy, 2011 Directed By: Professor Reza Ghodssi, Department of Electrical and Computer Engineering One of the most promising ways to improve clinical diagnostic tools is to use microfluidic Lab-on-a-chip devices. Such devices can provide a dense array of fluidic c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Micromachines
دوره 7 شماره
صفحات -
تاریخ انتشار 2016